

MECHANISTIC SAFETY ANALYSIS OF HYDROGEN BASED ENERGY SYSTEMS

W. Breitung Institute for Nuclear and Energy Technologies Karlsruhe Research Center Germany

Second European Summer School on Hydrogen Safety, University of Ulster, Belfast, 30 July- 8 August 2007

> KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

F HELMHOLTZ

CONTENT OF PRESENTATION

• Presentation consists of two topics which are treated in parallel

OUR EXAMPLE FOR HYDROGEN ANALYSIS

• Oil peak behind us, hydrogen fueled cars in widespread use • Returned from a trip late at night • There was some small collision but apperently no domage to LH₂-system • Park car in private garage • But at night the questions come . What could be the consequences? What would happen in case of a hydrogen leak? What would be Could they be How fast could the pressure flammable? loads? the burn be? What mixtures could develop? KIT - die Kooperation von Forschungszentrum Karlsruhe HELMHOLTZ Forschungszentrum Karlsruhe GmbH in der Helmholtz-Gemeinschaft 3 und Universität Karlsruhe (TH)

GENERIC ARCHITECTURE OF AN LH₂-TANK SYSTEM

Source: EU-Project EIHP-2, Final Report 2004

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) HELMHOLTZ

INVESTIGATED GARAGE SCENARIOS

- A thermal energy deposition of 1 Watt into a cryogenic LH₂-tank leads to a boil-off of 170 g of gaseous hydrogen per day
- Assume here 5 release pulses per day, 34 g H_2 each, with two different release rates

GEOM	ETRY	HYDROGEN SOURCE							
Garage Volume (m ³)	Vent Openings	H ₂ -Rate (g/s)	Duration (s)	Total Mass (g)	Release Temp. (K)	Release Location	Nr.		
	Two times	3.40	10	34	22.3	under-neath	1		
70.2	10 x 20 cm ²	0.34	100	34	22.3	trunk	2		

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

HELMHOLTZ GENEINSCHAFT

WHAT ARE THE IMPORTANT RISK DETERMINING PARAMETERS?

- Large spectrum of events possible, ranging from zero risk to destruction of garage
- What are the parameters influencing the outcome of such a leak scenario?

 Obvious first step is to understand mixture generation, defines initial and boundary conditions for further accident development

> KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

. . . .

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) HELMHOLTZ SEREINSCHAFT

AN INITIAL ESTIMATE ON HYDROGEN CONCENTRATION

• We can make a first estimate on the hydrogen concentration in the garage by using a single volume approach

volume fraction $H_2 \approx \frac{\text{volume } H_2 \text{ released}}{\text{volume of garage}}$	$=\frac{34\mathrm{g}\mathrm{H_{2}}\cdot22.4\mathrm{I}/2\mathrm{g}\mathrm{H_{2}}}{70\mathrm{m}^{3}}\approx0.5\%$
Any risk?	
Why is result independent of release rate?	
Obviously the real situation is more complex	
Next approach is a CFD model	

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

Physical models of 3d code GASFLOW (1)

Rekos

- Conservation equations of fluid flow (fully compressible, 3-dim. Navier- Stokes)
- Thermophysical properties of components (JANAF) (internal energy, specific heats, 25 components including two-phase water)
- Molecular transport coefficients (CHEMKIN) (thermal conductivity, dynamic viscosity, binary diffusion coefficients)
- Convective and radiative heat transfer between gas and structure
- Heat conduction within structures
- Condensation and vaporization of water (film, droplets, sump)

IRWST

T>1000K

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

Physical models of 3d code GASFLOW (2)

- Lumped- parameter sump model
- Boundary layer model for wall shear stress
- Turbulence modeling (algebraic, k-ε) (effects on molecular transport coefficients)
- Accident mitigation measures (Recombiner and igniter models, containment inertisation)
- Ventilation systems (1-dim. ducts, pipes, junctions, blowers, dampers, valves, filters, etc)

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

HELMHOLTZ GENEINSCHAFT

Rekos

GASFLOW EQUATIONS

Fully compressible Navier-Stokes, expressed in integral form for finite volume discretisation

J.R. Travis et al, Report FZKA-5994 (1998)

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

A HELMHOLTZ

GASFLOW VERIFICATION

• 3d code GASFLOW used and developed at FZK for hydrogen distribution simulation. Large verification matrix:

PHYSICAL PROCESS	MODEL	VERIFICATION																
		Analytical solution				Sin	igle e	effec	t te	sts				lr	ntegra	al ex	perin	nents
Distribution, GASFLOW			5.5	5.6	5.8		5.7	5.9	5.13	2	5.	11		5.12	5.13	5	.14	5.15
- geometry	 3d, cylindrical, cartesian graphical input 	Abb.	C/B1	I BMC	DAT	HET /	AECL	C/B2	2 HDI 1	R BN	IC PA	sco	BMC L	HDR T31.	5 E11	R ТІ 1.2	HAI F F	PHEBUS
 flow and transport 	 Navier-Stokes, 3d, vollkompressible 	 laminar channel flow 	Ì	1			1	1			1	•	•			• •		1
thermophys. properties	JANAF Tables																	
molekular transport	CHEMKIN	 diffusion, 1d 																
- turbulence	- k/ε		•	Jx7			÷							•)	• •		•
 turbulent heat transfer gas/wall 	 wall function 	 1D channel, theory 			•	•												
 heat conduction in struct 	 Fourier equation, 1d 	 1D Probleme 												•	, ,	•	•	•
 radiation 	 Momentum approximation 	• 1D, 2D										٠						
 vaporation/condensation 	 homogeneous equil. Model 							٠						•		• •		ė
 critcal flowl 	 analyt. Orifice solutions 																	
Mitigation:									6.	26	3 6.5	6.	4					
 rekombiners a) Siemens 	- 1-cell model								E11	.8.1		G	x4,6					
b) NIS	- 1-cell model									мс	3							
- igniter	- 1-cell model												Gx7					
 sump vaporization 	 homogeneous Sump model 									F	x4,5							

Report FZKA-7085 (2005), www.fzk.de/hbm

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) HELMHOLTZ

EXAMPLE FOR RECENT GASFLOW VERIFICATION

- German national benchmark, test TH7 in Thai facility with condensation
- Blind pressure prediction of CFD codes

14

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) HELMHOLTZ SEMEINSCHAFT

GASFLOW SIMULATION OF GARAGE SCENARIO

• Case 1: release rate 3.4 g H_2 / s for 10 seconds

Isosurface with 4 vol% H₂, depicts flammable mixture in garage

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) HELMHOLTZ

GASFLOW SIMULATION OF GARAGE SCENARIO

• Case 2: release rate 0.34 g H_2 / s for 100 seconds

Isosurface with 4 vol% H_2 , depicts flammable mixture in garage

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

HELMHOLTZ

RESULTING HYDROGEN CLOUD IN GARAGE

- Computed dimension of combustible H₂-air cloud in garage (4...75% H₂)
- Characteristic size of combustible cloud expressed as $d_{CC} = (V_{cc})^{1/3}$
- Combustible cloud size strongly dependent on release rate, is result of balance between source strength and sinks, or release rate and mixing mechanisms

HELMHOLTZ GEMEINSCHAF

WHAT IS RISK FROM COMBUSTIBLE CLOUD?

- How would you judge the hazard in both cases?
- Who would switch on lights in the garage?
- What physical quantities determine hazard potential of a combustible H₂-air cloud?

und Universität Karlsruhe (TH)

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) HELMHOLTZ

COMBUSTION REGIMES

• H₂ – air mixtures can burn in different modes / combustion regimes

Inert, no stable flame propagation $v_{fl} = 0$

Laminar deflagration $v_{fl} \approx 1$ m/s, Ma << 1

Fast turbulent deflagration $v_{fl} \approx 300 \text{ m/s}, \text{ Ma} \approx 1$

Detonation $v_{fl} \approx 1500$ m/s, Ma >> 1

• Change of mode possible by transition process

Ignition

Flame acceleration

KIT - die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

Deflagration-to-detonation transition (DDT)

HELMHOLTZ

PEAK OVERPRESSURES FROM HYDROGEN-AIR FLAMES

Maximum acceptable static load for typical inner containment structures (1 ton / m²)

- The maximum flame speed generally governs the damage potential
- Which combustion regime develops for given mixture and geometry?
- How fast can it burn?

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

HELMHOLTZ

IGNITION

- Combustion requires an ignition source and a burnable mixture
- Many potential ignition sources exist
- More than 90% of incidents with GH₂ lead to ignition, cause often unknown
- Ignition difficult to exclude in a hydrogen safety analysis, conservatively the presence of an ignition source may be assumed
- Controlling factor is then flammability of mixture, well known for H₂-air

Kreiser et al, Report Univ. Stuttgart IKE 2-116 (1994)

HELMHOLTZ GEMEINSCHAF

FLAME ACCELERATION

 Conservative conditions for flame acceleration in hydrogen mixtures were investigated in closed obstructed tubes, e.g. FZK 12m-tube

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

RESULTS OF FLAME ACCELERATION EXPERIMENTS

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

HELMHOLTZ GEMEINSCHAFT

FLAME ACCELERATION CRITERION

- Summary of experiments with different H₂-O₂- dilutend (N₂, Ar, He) mixtures in obstructed tubes of different scales
- Each point represents one experiment
- Results of data evaluation: expansion ratio σ is mixture property which governs flame acceleration limit
- No flame acceleration for σ < 3.75 ± 0.1 (10.5% H₂ in dry air)

In lecture notes

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) HELMHOLTZ GEMEINSCHAFT

DEFLAGRATION-TO DETONATION TRANSITION

Forschungszentrum Karlsruhe

in der Helmholtz-Gemeinschaft

- Two different modes of DDT have been observed
 - shock focussing
 - detonation on-set in turbulent flame brush
- Present here one example for DDT with pressure wave emitted from an obstructed region and focussed in a conus

• Shock tube with conus (idealized mode A)

Partially obstructed tube with conus (prototypic mode A)

• Fully obstructed tube (prototypic mode B)

HELMHOLTZ

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

TURBULENT DEFLAGRATION EXPERIMENT WITHOUT DDT

• Partially obstructed tube with conus, 15 % hydrogen in air

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

HELMHOLTZ

TURBULENT DEFLAGRATION EXPERIMENT WITH DDT

• Partially obstructed tube with conus, 16.5 % hydrogen in air

• Result: focussing of pressure waves emitted from a fast turbulent flame can trigger a detonation on other parts of the system

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

HELMHOLTZ GENEINSCHAFT

CRITERION FOR DDT

- Experiments on DDT in differently sized and shaped facilities have shown that a certain minimum scale is required for DDT
- Correlation of all experimental data with given definitions of D and detonation cell size data shows that detonations are only possible for $D/\lambda > 7$
- Current uncertainty in detonation cell size $\lambda \approx$ factor 2

• In accident scenarios D/λ can vary by orders of magnitude, criterion has therefore predictive capability

HELMHOLTZ GENEINSCHAF

DETONATION CELL SIZES

Detonation cell sizes (in cm) of H₂-air-steam mixtures at 375 K and 1 bar initial pressure. Dry hydrogen concentration is defined as H₂ / (H₂ + air)

State of the Art Report by a Group of Experts "Flame Acceleration and Deflagration – to – Detonation Transition in Nuclear Safety", Nuclear Safety NEA/CSNI/R(2000)7, August 2000

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

GENEINSCHAFT

SUMMARY OF CRITERIA

 Criteria for possible occurrence of fast combustion regimes were evaluated from many experiments with various H₂-mixturs on different scales

- Transition phenomena cannot be modeled numerically on large building scale
- Criteria allow selection of fastest possible combustion mode from computed H₂-air cloud composition and scale

GENEINSCHAF

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) HELMHOLTZ

COMPUTED HAZARD PARAMETERS FOR GARAGE SCENARIOS

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

HELMHOLTZ

HAZARD POTENTIAL FOR GARAGE SCENARIOS

• Risk parameters show strong dependence on H₂ release rate

- Case 1: (3.4 g H ₂ /s)	 Continuous potential for slow deflagration (≈ 20 g of 34 g) potential for supersonic combustion regimes (and ignition) during the release period high release rate not tolerable without mitigation measures
- Case 2: (0.34 g H ₂ /s)	 only small potential for slow deflagrations, natural mixing processes sufficient release rate (and mass) seems tolerable for present garage design

• Only **Case 1** followed in further safety analysis

COMBUSTION EXPERIMENTS FOR CASE 1

- Up to 20 g of hydrogen would be in burnable concentrations
- A significant part of this could potentially burn with high flame speeds
- What would be pressure loads and consequences from a local explosion in the garage?
- Outcome uncertain, experiments performed in test chamber simulating the garage

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) HELMHOLTZ

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

HELMHOLTZ

COMBUSTION UNITS

- To obtain conservative pressure loads, combustion units were developed providing the fastest possible flame speed for a given H₂ mass
- Cubes were made for 0.5, 1, 2, 4, 8 and 16 g of H₂, which can be inserted into each other
- Wire grids 6.5 x 0.65 mm, 12 layers between cubes

Hydrogen injection device

cubes covered with plastic, filled with stoichiometric H_2 - air mixture

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

UNCONFINED TEST OF COMBUSTION UNIT

FLAME SPEEDS IN COMBUSTION UNITS

- The flame acceleration inside the combustion units was measured with photodiodes
- For 8 and 16 g H₂ detonation speeds are obtained at the outer edge of the cube

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

HELMHOLTZ

- Measured peak overpressures Δp^+ in unconfined tests with combustion units of 0.5 to 16 g H₂
- Data are well reproducible

HELMHOLTZ

IMPULSE VS DISTANCE

HELMHOLTZ SEREINSCHAFT

SCALED PEAK OVERPRESSURES VS DISTANCE

- Use of Sachs scaling collapses measured peak overpressures to universal correlation for \geq 1 g H₂, E = total energy of explosive charge
- Combustion units provide conservative and well defined overpressures

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

HELMHOLTZ GEMEINSCHAFT

TEST CELL FOR GARAGE SIMULATION

- Dimensions 5.5 x 8.5 x 3.4 m, about 160 m^3
- Air flow ≤ 24.000 m³/h, up to 1 air exchange in 24s
- Controlled air flows in chamber possible
- All ventilation systems
 explosion protected
- Test cell used for simulation of garage /confined volume

Forschungszentrum Karlsruhe

in der Helmholtz-Gemeinschaft

INSTRUMENTATION OF GARAGE

• The instrumentation included pressure and acceleration sensors at different locations, covering flat surfaces, (2d) edges and (3d) corners

HELMHOLTZ

45

LOCAL HYDROGEN EXPLOSIONS IN A GARAGE

- H₂ mass:
- 1g
- 2g
- 4g
- 8g - 16g

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) HELMHOLTZ GEREINSCHAFT

REPRODUCIBILITY OF MEASURED DATA

- The experiment with 1 g H₂ was performed three times
- Acceleration and pressure sensors show very good reproducibility of measured signals
- Complex, but reproducible pressure waves are created in confined local explosions of H₂-air mixtures

C

HELMHOLTZ

COMPARISON OF OVERPRESSURES

Forschungszentrum Karlsruhe

in der Helmholtz-Gemeinschaft

 Pressure sensor 2 B, floor near combustion unit Pressure sensor 8 A, back wall, half wall height

HELMHOLTZ

 Pressure signals very consistent in timing, amplitudes increase systemarically with H₂ mass, reproducible pattern of reflected pressure waves in confined volume.

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

HELMHOLTZ

TURBULENT DEFLAGRATION REGIMES

COM3D EQUATIONS

Hydrodynamic equations

The set of conservation laws for mass, momentum, energy and species reads as

$$\begin{split} (\rho)_t &+ (\rho u_j)_{x_j} = 0, \\ (\rho u_j)_t &+ (\rho u_i u_j)_{x_j} = \rho g_i - p_{x_i} + M_{ij;x_j}, \quad i = 1, 2, 3 \\ (\rho e)_t &+ ((\rho e + p)u_j)_{x_j} = \\ &\rho g_j u_j + u_i M_{ij;x_j} + (\frac{\mu_{tur}}{C_h} (e - \frac{1}{2} u_i u_i + \frac{p}{\rho})_{x_j})_{x_j} + B + \rho \epsilon, \\ (\rho f_\alpha)_t &+ (\rho f_\alpha u_j)_{x_j} = \overline{w}_\alpha + (\frac{\mu_{tur}}{C_{f\alpha}} f_{\alpha;x_j})_{x_j}, \end{split}$$
here

$$e = \sum_{\alpha=1}^{N} \frac{f_{\alpha}}{\mu_{\alpha}} \left(h_{\alpha} + \Delta h_{\alpha}^{0} - RT \right) + \frac{1}{2} u_{j} u_{j}, \quad f_{\alpha} = \frac{\rho_{\alpha}}{\rho},$$
$$M_{ij} = -\frac{2}{3} \delta_{ij} (\rho k + \mu_{tur} u_{r,xr}) + \mu_{tur} (u_{i,xj} + u_{j,x_i}).$$

Closure of the equation depends on the knowledge of the following variables: μ_{tur}, k, ϵ (theory of turbulence) and \dot{w}_{α} (combustion model).

• COM3D under development at FZK for simulation of turbulent deflagration

RNG k-e model

$$\begin{aligned} (\rho k)_t + (\rho u_j k)_{x_j} &= S - \rho \epsilon + (\frac{\mu_{tur}}{C_k} k_{x_j})_{x_j}, \\ (\rho \epsilon)_t + (\rho u_j \epsilon)_{x_j} &= \frac{\epsilon}{k} [(C_1 - C_\eta) S - C_2 \rho \epsilon] + (\frac{\mu_{tur}}{C_\epsilon} \epsilon_{x_j})_{x_j} + \\ &+ [C_3 - \frac{2}{3} C_\eta (C_\mu \frac{k}{\epsilon} u_{j;x_j} + 1)] \rho u_{j;x_j} \epsilon. \end{aligned}$$

Here C_η is defined by

and

$$C_{\eta} = rac{\eta(1-\eta/\eta_0)}{1+eta\eta^3}, \qquad \eta_0 = 4.38$$

$$\eta = \frac{k}{\epsilon} \left(\frac{1}{2} (u_{i,x_j} + u_{j,x_i}) (u_{i,x_j} + u_{j,x_i}) \right)^{1/2},$$

$$C_3 = \frac{-1 + 2C_1 - 3m(\gamma - 1) + (-1)^{\delta} \sqrt{6} C_{\mu} C_{\eta} \eta}{3}.$$

Turbulence model constants $C\mu$ C_1 C_2 C_k C_{ϵ} β 1.42 0.719 0.719 RNG k-e 0.0845 1.680.0121.44 1.92 Standard k- ϵ 0.09 1.0 1.3

Turbulence and reaction model

The standard k- ϵ model (semi-empirical character: the constants C_{α} are calibrated against turbulent tube experiments)

$$(\rho k)_t + (\rho k u_j)_{x_j} = S - \rho \epsilon + (\frac{\mu_{tur}}{C_k} k_{x_j})_{x_j},$$

$$(\rho \epsilon)_t + (\rho \epsilon u_j)_{x_j} = \frac{\epsilon}{k} (C_1 S - C_2 \rho \epsilon) + (\frac{\mu_{tur}}{C_k} \epsilon_{x_j})_{x_j}.$$

Where

$$S = u_{i,x_j} M_{ij} - B; \ B = rac{\mu_{tur}}{C_{
ho}} rac{1}{
ho^2}
ho_{x_T} p_{x_T}; \ \mu_{tur} = \mu + C_{\mu}
ho rac{k^2}{\epsilon}.$$

Limiting regimes of turbulent combustion $D_a = \tau_{turb} / \tau_{chem}$:

- low turbulence intensities / fast chemical reaction

- high turbulence intensities / slcw chemical reactions

$$\dot{\omega} = \begin{cases} -C'_f \frac{\epsilon}{k} \omega(1-\omega); & D_a > 1\\ -K_{chem} \omega \exp(-E_a/T); & D_a < 1 \end{cases}$$

$$\tau_{turb} = \frac{k}{\epsilon}; \quad \tau_{chem} = \frac{1}{K_{chem}\omega \exp(-E_a/T)}$$

and (Said & Borghi)

HELMHOLTZ

$$C_f' = C_f \left(1 + \frac{4.4}{1 + 3.2 \frac{k^{1/2}}{S_L}} \right)$$

A. Kotchourko, IKET

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

COM3D VERIFICATION (1)

- Large scale experiments performed in RUT facility near Moscow (FZK, CEA, partly NRC), H₂-air, H₂-air-steam
 - Total length 62 m
 - Total volume 480 m³
 - First channel with obstacles
 - Second part without obstacles

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

HELMHOLTZ

COM3D VERIFICATION (2)

Forschungszentrum Karlsruhe

in der Helmholtz-Gemeinschaft

- Numerical simulation of large scale RUT experiments with hydrogen-air and hydrogen-air steam mixtures. Standard k-ε and Eddy-Break-up model.
- Venting in experiments, no venting in simulation

HELMHOLTZ

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

HELMHOLTZ

SIMULATION OF UNCONFINED TESTS

- The unconfined tests with different combustion units were simulated with COM3D
- The COM3D combustion model was fitted to the measured flame speed in the combustion units

• The calculated peak overpressures agree with the experimental values and follow Sachs scaling

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

HELMHOLTZ GEMEINSCHAFT

COM3D COMBUSTION SIMULATION

- 3d pressure field, calculated isosurface for 1.1 bar
- Isosurface 110000 Pa • Test with 8g H₂ Préssure 200000 180000 160000 140600 120600 CALLS SHELLING William. 100000 1.1185-15 80000 60000 40000 20000 0 Test Cell COM3D v.2.2.5 KIT – die Kooperation von HELMHOLTZ Forschungszentrum Karlsruhe GmbH

und Universität Karlsruhe (TH)

COMPARISON OF OVERPRESSURES

 Good agreement, remaining differences are due to geometry simplification and rigid wall model in simulation

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

HELMHOLTZ

STRUCTURAL RESPONSE

• What are effects of blast loads on the structure?

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) HELMHOLTZ SEREINSCHAFT

- Simplest model for structural response is SDO model
- Describes ground mode (first harmonic) of structural element which is represented by lumped values for mass, stiffness and damping of motion
- Tool to understand basic effects of transient pressure loads on global displacement of element
- In FEM analysis also higher modes included, but superposition of different effects, results not so transparent

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

HELMHOLTZ

BLAST LOADED ELASTIC OSCILLATOR (1)

≯t

- Damage is determined by maximum displacement x_{max}, can be found from solution by setting $\dot{x}(t) = 0$
- Scaled displacement = f(scaled loading time)

$$\frac{x_{max}}{\Delta p^+/k} = f(\omega T_{load})$$

0.0

0.1

HELMHOLTZ

1.0

scaled loading time ωT

10

100

p*(t) = P*e^{-t/T}

1000

BLAST LOADED ELASTIC OSCILLATOR (2)

 Asymptotes for maximum deflection /deformation can be computed from energy balances Quasistatic loading realm (T load >>T osc) - strain energy = work on structure Scaled displacement $\frac{1}{2}$ kx²_{max} = $\Delta p^{+} \cdot x_{max}$ $\frac{x_{max}}{\Delta p^+/k} = 2$ dynamic maximum deflection is two times static deflection (DLF = 2) • Impulsive loading realm ($T_{load} \ll T_{osc}$) - initial kinetic energy = strain energy $\frac{1}{2}mv_0^2 = \frac{1}{2}kx_{max}^2$ $\frac{l^2}{2m} = \frac{1}{2}kx_{max}^2 \qquad l = \int_0^\infty \Delta p^+ e^{-t/T_{load}} = \Delta p^+ \cdot T_{load}$

 $\frac{\mathbf{x}_{\text{max}}}{\Delta \mathbf{p}^+/\mathbf{k}} = (\frac{\mathbf{k}}{\mathbf{m}})^{1/2} \mathbf{T}_{\text{load}} = \boldsymbol{\omega} \mathbf{T}_{\text{load}} \quad \text{or} \quad \mathbf{x}_{\text{max}} = (\frac{1}{\mathbf{k} \mathbf{m}^{1/2}}) \cdot \mathbf{I}$

maximum deformation is proportional to blast wave impulse I

Scaled loading time ωT

W.E. Baker, P.A. Cox, P.S. Westine, J.J. Kulesz, R.A. Strehlow; Explosion Hazards And Evaluation; Fundamental Studies in Engineerings, 5; Elsevier

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) HELMHOLTZ

OSCILLATOR RESPONSE: ANOTHER VIEW

- Often oscillator response is presented with inverted ordinate and unscaled load parameters Δp^+ and T_{load}
- Quasistatic asymptote

$$\frac{\Delta p^{+}}{kx_{max}} = \frac{1}{2}$$
$$\Delta p^{+} = \frac{kx_{max}}{2}$$

Maximum deflagration x_{max} is only proportional to applied peak overpressure Δp^+ , independent of load duration

• Impulsive asymptote

$$\frac{\Delta p^{+}}{kx_{max}} = \frac{1}{\omega T_{load}}$$
$$\Delta p^{+} = (km)^{\frac{1}{2}} x_{max} \frac{1}{T_{load}}$$
$$\Delta p^{+} T_{load} = I \sim x_{max}$$

Maximum deflection x_{max} is proportional to applied impulse

log of positive overpressure duration $\mathsf{T}_{\mathsf{load}}$

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

HELMHOLTZ GENEINSCHAFT

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) HELMHOLTZ

STRUCTURAL DAMAGE FROM CONFINED LOCAL H₂ EXPLOSIONS IN GARAGE

Results: - windows and light garage components (door) wold break

- damage to masonary walls only from nearly explosion of 16 g H₂
- wooden framework construction would be destroyed

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) HELMHOLTZ

HUMAN EFFECTS FROM CONFINED LOCAL H₂ – EXPLOSIONS IN GARAGE

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

HELMHOLTZ

SUMMARY OF MECHANISTIC SAFETY ANALYSIS OF HYDROGEN BASED ENERGY SYSTEMS

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) HELMHOLTZ

PROCEDURE FOR HYDROGEN SAFETY ANALYSIS

• A complete, self-consistent and mechanistic analysis procedure has been developed which addresses all important physical phenomena of hydrogen behaviour in accidental release scenarios

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

HELMHOLTZ

MITIGATION MEASURES

• The proposed analysis procedure allows identification of possible mitigation measures for risk reduction

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

HELMHOLTZ GENEINSCHAFT